Category: Resources

State-of-the-Art in Bio-Inspired Robotics

State-of-the-Art in Bio-Inspired Robotics

A comprehensive summary of the state-of-the-art in bio-inspired robotics, compiled from the responses provided by six different chatbots:


Bio-inspired robotics, also known as biomimetic robotics, is a rapidly evolving field that draws inspiration from biological systems to design and develop advanced robotic technologies. By mimicking the form, function, and behavior of natural organisms, researchers aim to create robots that are more efficient, adaptable, and capable of performing complex tasks in various environments. The state-of-the-art in bio-inspired robotics encompasses several key areas:

1. Soft Robotics

Soft robotics focuses on creating robots using flexible, compliant materials that can deform and adapt to their surroundings. Inspired by the soft bodies of animals like octopuses, worms, and caterpillars, these robots use materials such as:

  • Elastomers and hydrogels for flexible and stretchable structures
  • Shape-memory alloys and polymers for programmable deformation
  • Pneumatic and hydraulic actuators for soft, fluid movements

Soft robots can navigate complex environments, handle delicate objects, and withstand impacts, making them suitable for applications in healthcare, search and rescue, and human-robot interaction.

2. Biohybrid Systems

Biohybrid systems integrate living biological components, such as cells or tissues, with engineered robotic systems. This approach combines the best of both worlds, leveraging the adaptability and efficiency of biological systems with the controllability and robustness of synthetic components. Examples include:

  • Muscle-driven actuators using engineered muscle cells
  • Neural interfaces incorporating living neural tissue
  • Plant-based robots that harness photosynthesis for energy
  • Cyborg tissues made from a combination of living cells and artificial materials

Biohybrid robots have the potential to self-heal, adapt to their environment, and perform complex functions with high efficiency.

3. Micro and Nanorobotics

Micro and nanorobotics involve the development of extremely small-scale robots, often inspired by microorganisms like bacteria and sperm cells. These tiny robots can navigate through narrow spaces, such as blood vessels, and perform precise tasks at the cellular level. Key advancements in this area include:

  • Magnetic control for directing the movement of microrobots
  • Biodegradable materials for safe operation within the body
  • Targeted drug delivery and minimally invasive surgery applications

Micro and nanorobots hold promise for revolutionizing healthcare, enabling targeted therapies and diagnostic techniques.

4. Swarm Robotics

Swarm robotics takes inspiration from the collective behavior of social insects like ants, bees, and termites. By coordinating large numbers of simple robots, swarm systems can accomplish complex tasks through emergent behaviors. Swarm robots feature:

  • Decentralized control and local interactions
  • Robustness and flexibility through redundancy
  • Scalability and adaptability to changing environments

Applications of swarm robotics include environmental monitoring, search and rescue, agricultural automation, and construction.

5. Biomimetic Locomotion and Manipulation

Researchers are developing robots that mimic the diverse locomotion and manipulation strategies found in nature. These include:

  • Legged robots inspired by quadrupeds, bipeds, and insects
  • Flying robots that replicate the flight mechanics of birds and insects
  • Underwater robots that swim like fish or propel themselves like jellyfish
  • Climbing robots that adhere to surfaces like geckos or use microspines
  • Manipulators with dexterous grasping abilities inspired by human hands

By leveraging the principles of biological locomotion and manipulation, these robots can navigate complex terrains, perform agile maneuvers, and interact with their environment in sophisticated ways.

6. Biomimetic Sensing and Perception

Bio-inspired robots are incorporating advanced sensing and perception capabilities that mimic the remarkable sensory systems found in nature. Examples include:

  • Artificial compound eyes for wide-angle vision
  • Whisker-like sensors for tactile sensing and flow detection
  • Olfactory sensors for chemical detection and identification
  • Echolocation systems inspired by bats and dolphins
  • Neuromorphic sensors that emulate the processing in biological neural networks

These biomimetic sensory systems enable robots to gather and interpret complex environmental information, enhancing their situational awareness and decision-making capabilities.

7. Soft and Wearable Robotics

The integration of bio-inspired principles into soft and wearable robotics is leading to the development of adaptive and responsive devices that can assist and augment human capabilities. Key areas include:

  • Exoskeletons and assistive devices that provide support and enhance strength
  • Soft robotic gloves and grippers for dexterous manipulation
  • Wearable sensors and actuators for human motion tracking and assistance
  • Soft robotic orthotics and prosthetics for rehabilitation and restoration of function

These wearable and assistive technologies have the potential to revolutionize healthcare, manufacturing, and human-robot collaboration.

8. Evolutionary and Developmental Robotics

Evolutionary robotics applies principles from natural evolution to optimize robot designs and behaviors. By using genetic algorithms and other evolutionary computation techniques, researchers can automatically generate and refine robotic systems that are well-adapted to their intended tasks and environments.

Developmental robotics, on the other hand, takes inspiration from the processes of biological development and learning. By mimicking the way organisms grow, adapt, and learn from their experiences, developmental robots can acquire skills and knowledge through interaction with their environment, leading to more flexible and autonomous systems.

9. Biofabrication and Smart Materials

Advances in biofabrication techniques, such as 3D bioprinting and self-assembly, are enabling the creation of complex, bio-inspired structures with unprecedented precision and functionality. These methods can produce robots with intricate geometries, gradient materials, and embedded sensors and actuators.

Furthermore, the development of smart materials, such as self-healing polymers, shape-memory alloys, and stimuli-responsive materials, is opening up new possibilities for creating robots that can adapt, repair themselves, and respond to their environment in ways that mimic biological systems.

Challenges and Future Directions

Despite the significant advancements in bio-inspired robotics, several challenges remain. These include:

  • Scalability and manufacturability of complex bio-inspired designs
  • Long-term durability and biocompatibility of biological components
  • Energy efficiency and power management for untethered operation
  • Control and coordination of large numbers of distributed agents
  • Ethical and societal implications of increasingly lifelike and autonomous robots

As research in bio-inspired robotics continues to progress, we can expect to see even more innovative and transformative developments in the coming years. The convergence of biology, materials science, robotics, and artificial intelligence will likely lead to the emergence of highly capable, adaptable, and intelligent robotic systems that can address a wide range of societal challenges, from healthcare and environmental conservation to space exploration and beyond.

Additional resources

  1. Kim, S., Laschi, C., & Trimmer, B. (2013). Soft robotics: a bioinspired evolution in robotics. Trends in Biotechnology, 31(5), 287-294. https://doi.org/10.1016/j.tibtech.2013.03.002
  2. Ricotti, L., Trimmer, B., Feinberg, A. W., Raman, R., Parker, K. K., Bashir, R., … & Menciassi, A. (2017). Biohybrid actuators for robotics: A review of devices actuated by living cells. Science Robotics, 2(12), eaaq0495. https://doi.org/10.1126/scirobotics.aaq0495
  3. Sitti, M. (2018). Miniature soft robots – road to the clinic. Nature Reviews Materials, 3(6), 74-75. https://doi.org/10.1038/s41578-018-0001-3
  4. Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: a review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1-41. https://doi.org/10.1007/s11721-012-0075-2
  5. Ijspeert, A. J. (2014). Biorobotics: Using robots to emulate and investigate agile locomotion. Science, 346(6206), 196-203. https://doi.org/10.1126/science.1254486
  6. Barth-Maron, G., Stout, A., Yarats, D., Budden, D., Esipova, I., Abdolmaleki, A., … & Lillicrap, T. (2022). Biomimetic robots. Nature Machine Intelligence, 4(6), 445-453. https://doi.org/10.1038/s42256-022-00502-7
  7. Rus, D., & Tolley, M. T. (2015). Design, fabrication and control of soft robots. Nature, 521(7553), 467-475. https://doi.org/10.1038/nature14543
  8. Bongard, J., Zykov, V., & Lipson, H. (2006). Resilient machines through continuous self-modeling. Science, 314(5802), 1118-1121. https://doi.org/10.1126/science.1133687
  9. Wehner, M., Truby, R. L., Fitzgerald, D. J., Mosadegh, B., Whitesides, G. M., Lewis, J. A., & Wood, R. J. (2016). An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature, 536(7617), 451-455. https://doi.org/10.1038/nature19100
  10. Laschi, C., Mazzolai, B., & Cianchetti, M. (2016). Soft robotics: Technologies and systems pushing the boundaries of robot abilities. Science Robotics, 1(1), eaah3690. https://doi.org/10.1126/scirobotics.aah3690
Transparent OLED touch screen

Transparent OLED touch screen

내가 쓸 수 있을 물건을 오래 전부터 찾고 있는데 아직도 내가 쓸 수 있는 것은 없지만 (아직도 나는 쓸 수 없지만) 전보다 물건들은 많고 자료도 많다.

LG 것 웹 주소 몇 개

https://www.oledspace.com/

https://www.lg-informationdisplay.com/oled-signage/brand

https://www.instagram.com/oledartwave/

http://oledartwave.com/

https://www.instagram.com/oled_space.kr/

https://www.instagram.com/lg_oledart/

https://lgoledart.com/

https://www.sejongpac.or.kr/portal/performance/exhibit/view.do?performIdx=33789&menuNo=200005

Jonathan Whitaker님의 AIAIART, The Generative Landscape

Jonathan Whitaker님의 AIAIART, The Generative Landscape

YouTube의 Computerphile에 올라온 새 영상 https://youtu.be/-lz30by8-sU 을 보고 발견한 좋은 자료

나는 Twitter에서 follow 대상 수 제한때문에 보조 계정인 phaidalos로 이 분을 follow

https://github.com/johnowhitaker/aiaiart

https://johnowhitaker.github.io/tglcourse/

https://www.nottingham.ac.uk/computerscience/


그건 그렇고 Tweet을 embed하는 블록을 사용하니 embed된 내용을 내가 손댈 수 없고 hyperlink 웹 페이지가 현재 창에 열리는 것을 새 창에 열리도록 바꿀 수 없다. 싫.

장소성, placeness, 장소감, sense of place, 장소정체성, place identity (업데이트 중)

장소성, placeness, 장소감, sense of place, 장소정체성, place identity (업데이트 중)

Neuroarchitecture study group’s monthly seminar 10월 참석 후 여러 이어 갈 생각이 머리를 떠나지 않는다. 그 전에 내게는 낯선 용어이지만 중요한 개념인 ‘placeness’를 살펴야 하겠기에 검색한 내용 일부를 일단 적고 정리는 시간 나는 대로 이어 하기로.


“하이데거적 장소성과 도무스의 신화”

https://blog.naver.com/archidemia/221548906050

이 분께서 같은 제목으로 내신 책이 있어 그 출판사 “아키텍스트”의 정보를 찾으니 “공간”지에서 이를 “아키텍스트는 건축 전문지 등에 소개된 동시대 저자의 글을 하나의 주제로 엮어내는 출판사”라 소개한 것이 보인다. 아키텍스트의 웹사이트는보이지 않아 그 책 정보는 교보문고의 것으로 대신한다.

ISBN: 9788998573119 ( 8998573113 )

https://product.kyobobook.co.kr/detail/S000060623390

서언: 공간에서 장소로

공간이야말로 건축에서 가장 중요한 요소임은 두말할 나위가 없다. 다른 이유를 차치하더라도 비움의 공간이 건축의 쓸모와 직결되기 때문이다. 건축의 실체가 공간임을 수백 년 전에 이미 중국의 노자가 선포했다고 프랭크 로이드 라이트가 주장했던 레토릭은 흥미롭다.1 근대적 의미에서 공간을 건축의 핵심적 속성으로 보고 논의를 전개시킨 것은 고트프리트 젬퍼Gottfried Semper, 아우구스트 슈마르조August Schmarsow 등 19세기 독일의 저술가들이었다. 라이트를 비롯한 대부분의 모더니스트 건축가들이 공간을 주요 화두로 삼았던 것도 그 연장선상에 있다고 하겠다. 근대 건축사의 캐논으로 간주되던 지그프리트 기디온 Sigfried Giedion의 『공간, 시간, 건축』(1941)이 공간을 강조한 바가 이를 단적으로 보여준다.
하지만 20세기 후반 국제주의적이고 기능주의적인 근대 건축이 공격을 받게 되는 가운데, 공간의 추상성은 그 비판의 타깃이 되곤 했다. 데카르트적 공간이 함의한 균질성과 무한 확장성이 각 지역의 장소성을 외면하며 전 세계를 동질화시키는 주범으로 인식되었기 때문이다.

(9페이지, 김현섭)

건축 거주 사유
우리는 다음에서 거주와 건축에 관해 사유하고자 한다. 여기에서 건축에 관한 사유는 건축의 논리를 찾아내거나 혹은 심지어 건축에 규칙을 부여하려는 것이 아니다. 여기에서 시도하는 사유는 건축을 건축예술과 기술로부터 서술해 가는 것이 아니라 오히려 건축이 속하는 존재의 영역으로까지 건축을 추적하려고 한다.
이제 우리는 다음과 같이 질문한다.

거주란 무엇인가?

건축은 어느 정도까지 거주에 속하는가?
우리가 거주를 목적으로 한다면 우선 건축을 통해야 비로소 도달할 것처럼 보인다. 전자, 즉 건축은 후자, 즉 거주를 목표로 삼는다. 그런데 모든 건축물이 주거 건물은 아니다. 다리, 비행장, 경기장, 발전소는 건축물이긴 하나 주거 건물은 아니다. 기차역, 고속도로, 댐, 시장 등도 건축물이긴 하나 결코 주거 건물은 아니다. 그렇지만 위에서 언급한 건축물들은 우리가 거주하는 영역 안에 서 있다. 이 영역은 이 건축물들의 바깥으로 확장되어 있지만, 거꾸로 이 영역을 주거로 한정할 수도 없다. 트럭 운전사는 늘 고속도로에서 일한다.

(45페이지, 마르틴 하이데거)

장소의 현상
우리의 일상적 삶은 구체적인 ‘현상들’로 구성되어 있다. 그것은 사람으로, 동물로, 꽃과 나무와 숲으로, 돌과 흙과 나무와 물로, 마을과 거리와 집들과 문과 창과 가구들로 구성되어 있다. 그리고 그것은 해와 달과 별들로, 흐르는 구름으로, 밤과 낮과 변화하는 계절로 이루어져 있다. 그러나 그것은 또한 느낌과 같이 뭐라 꼭 꼬집어 말할 수 없는 더 많은 현상들로 이루어져 있다. 이것은 ‘주어진 것’, 즉 우리 실존의 ‘내용’이다. 그래서 릴케는 “여기서 우리는 집, 다리, 분수, 입구, 주전자, 과일 나무, 창문, -기껏해야 기둥, 탑을 말해야 할 것이다”1라고 말한다. 그 밖의 모든 것, 예컨대 원자와 분자, 숫자, 그리고 모든 종류의 ‘데이터’는 일상적 삶의 도구와는 다른 목적에 봉사하도록 구축된 추상물 혹은 도구이다. 오늘날 도구를 실재로 착각하는 것은 흔한 일이다.
우리에게 주어진 세계를 구성하는 구체적인 것들은 복잡하면서도 아마도 모순되는 방식으로 상호 연관되어 있다. 가령 그 현상들의 일부는 다른 것들로 이루어질 것이다. 숲은 나무들로 이루어져 있고, 도시는 집들로 이루어져 있다. ‘풍경’은 그런 포괄적인 현상이다.

(87페이지, 크리스티안 노르베르그 슐츠)

홍성희, 박준서, 임승빈. (2011). 장소성 정의 및 개념 연구 . 한국경관학회 학술발표대회, v.2011(n.1), 39-52.

https://www.auric.or.kr/User/Rdoc/DocRdoc.aspx?returnVal=RD_R&dn=314111

위 논문은 건축도시연구정보센터(AURIC) https://www.auric.or.kr/ 에서 찾았는데 이곳에는 읽은 이들이 평을 적을 수 있구나. 자신의 공부, 연구에 좋은 자료가 되었고 고맙다는 평들이 적혀 있다.


서동진, 김주연. “장소정체성을 위한 장소성의 다의적 개념 비교 연구”. 한국공간디자인학회 논문집, vol. 17, pp.263-273, 2022.

Seo Dongjin, Kim Jooyun. “A Comparative Study of the Multi-Meaningful Concept of Placeness for Place Identity”. Journal of the Korea Institute of the Spatial Design, vol. 17, pp.263-273, 2022.

https://kiss-kstudy-com-ssl.openlink.knsu.ac.kr:8446/thesis/thesis-view.asp?key=3946672


홍성희, 박준서, 임승빈. “환경계획ㆍ설계를 위한 장소성 개념 연구: ‘Sense of Place’와 ‘Placeness’ 용어 비교 분석”. 한국경관학회지, vol. 3, pp.14-29, 2011.

Hong Sung Hee, Park Joon Seo, Im Seung Bin. “A Study on the Concept of ‘Sense of Place’ for Environmental Planning and Design”. Journal of the Korea Landscape Council, vol. 3, pp.14-29, 2011.

https://kiss-kstudy-com-ssl.openlink.knsu.ac.kr:8446/thesis/thesis-view.asp?key=3660911

place authenticity, place memory

CipherTrace’s “Crime and Anti-Money Laundering Report” 2022-10

CipherTrace’s “Crime and Anti-Money Laundering Report” 2022-10

In CipherTrace’s latest Cryptocurrency Crime and Anti-Money Laundering Report, we look back at those volatile few months, zeroing in on the quarter’s most important trends, news stories and global regulatory changes. For this report, our second since being acquired by Mastercard, we’ve added a new regular feature: a granular analysis of regional- and country-level activity that highlights key regulatory updates and law enforcement efforts.

“Battling crypto crime around the world: A look at the fight against theft and fraud in a challenging market”, Dave Jevans, 2022-10-02 https://ciphertrace.com/battling-crypto-crime-around-the-world-a-look-at-the-fight-against-theft-and-fraud-in-a-challenging-market/

The report is available here: https://ciphertrace.com/crime-and-anti-money-laundering-report-october-2022/

NVIDIA GTC 2022에서

NVIDIA GTC 2022에서

Voice & Behavioral Biometrics – Enhanced Security Through Voice Analytics

Presented by Dell Technologies [A41412]

https://register.nvidia.com/flow/nvidia/gtcfall2022/attendeeportal/page/sessioncatalog/session/1658808543794001XuSM

Synthetic identity fraud is one of the fastest-growing types of financial crime. At the same time, combining AI-powered voice biometric & behavioral analytics systems is considered one of the safest data protection methods in modern-day cybersecurity. In this panel, we discuss the pros and cons of this approach, e.g., in banking and financial services. Panelists share key considerations and provide insight into the neural nets, and the Dell-NVIDIA technologies that can help prevent fraud and identity theft.

https://static.rainfocus.com/nvidia/gtcfall2022/sess/1658808543794001XuSM/supmat/A41412 – Voice & Behavioral Biometrics – Enhanced Security Through Voice Analytics (Presented by Dell Technologies)_1663693327033001rqdV.pdf

Artificial intelligence and photography

Artificial intelligence and photography

Are You Sure You Know What a Photograph Is?
https://www.wired.com/story/photography-artificial-intelligence-technology/
(2022-01-20)

What Is The Future Of Artificial Intelligence In Photo Editing?
https://www.forbes.com/sites/forbesbusinesscouncil/2022/01/20/what-is-the-future-of-artificial-intelligence-in-photo-editing/
(2022-01-20)

Dr. Michio Kaku talking ‘mind uploading’

Dr. Michio Kaku, who wrote the book “The Future of the Mind” (ISBN-13: 978-0307473349, available in paperback, hardcover and ebook; 한국어판은 “마음의 미래”, ISBN-13: 9788934970576, 양장과 ebook으로 출판되었다.) talks ‘mind uploading’ on Morning Joe, MSNBC. (This interview was held on 26 February 2014.) Watch it on MSNBC: http://www.msnbc.com/morning-joe/watch/photographing-a-dream-inside-the-human-brain-171408963816 MSNBC also gave some excerpts from his book: http://www.msnbc.com/morning-joe/excerpt-the-future-the-mind Dr. […]

Theme: Overlay by Kaira __
Fury Road, Pluto